首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28714篇
  免费   4109篇
  国内免费   2675篇
化学   19673篇
晶体学   263篇
力学   1901篇
综合类   274篇
数学   3280篇
物理学   10107篇
  2024年   28篇
  2023年   568篇
  2022年   531篇
  2021年   791篇
  2020年   1099篇
  2019年   1056篇
  2018年   876篇
  2017年   778篇
  2016年   1226篇
  2015年   1171篇
  2014年   1484篇
  2013年   1989篇
  2012年   2566篇
  2011年   2661篇
  2010年   1651篇
  2009年   1642篇
  2008年   1739篇
  2007年   1664篇
  2006年   1501篇
  2005年   1236篇
  2004年   941篇
  2003年   766篇
  2002年   693篇
  2001年   537篇
  2000年   520篇
  1999年   610篇
  1998年   557篇
  1997年   544篇
  1996年   615篇
  1995年   502篇
  1994年   457篇
  1993年   384篇
  1992年   363篇
  1991年   316篇
  1990年   247篇
  1989年   201篇
  1988年   157篇
  1987年   135篇
  1986年   125篇
  1985年   118篇
  1984年   87篇
  1983年   60篇
  1982年   41篇
  1981年   36篇
  1980年   17篇
  1978年   19篇
  1977年   23篇
  1976年   20篇
  1975年   28篇
  1974年   27篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
41.
The radius of spatial analyticity for solutions of the KdV equation is studied. It is shown that the analyticity radius does not decay faster than t?1/4 as time t goes to infinity. This improves the works of Selberg and da Silva (2017) [30] and Tesfahun (2017) [34]. Our strategy mainly relies on a higher order almost conservation law in Gevrey spaces, which is inspired by the I-method.  相似文献   
42.
Metal–organic frameworks (MOFs) have shown great potential in gas separation and storage, and the design of MOFs for these purposes is an on-going field of research. Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a valuable technique for characterizing these functional materials. It can provide a wide range of structural and motional insights that are complementary to and/or difficult to access with alternative methods. In this Concept article, the recent advances made in SSNMR investigations of small gas molecules (i.e., carbon dioxide, carbon monoxide, hydrogen gas and light hydrocarbons) adsorbed in MOFs are discussed. These studies demonstrate the breadth of information that can be obtained by SSNMR spectroscopy, such as the number and location of guest adsorption sites, host–guest binding strengths and guest mobility. The knowledge acquired from these experiments yields a powerful tool for progress in MOF development.  相似文献   
43.
The usual heat flow moves along the direction from high temperature place to the low one, as often observed in the daily life. However, when the gas is very rarefied, the gas may move along a different way, that is, the so-called thermal creep flow moves along the direction from the low temperature place to the high one. In this note, we will survey our recent mathematical works on this topic, mainly based on [27] and [25].  相似文献   
44.
Mass spectrometry (MS) driven metabolomics is a frequently used tool in various areas of life sciences; however, the analysis of polar metabolites is less commonly included. In general, metabolomic analyses lead to the detection of the total amount of all covered metabolites. This is currently a major limitation with respect to metabolites showing high turnover rates, but no changes in their concentration. Such metabolites and pathways could be crucial metabolic nodes (e.g., potential drug targets in cancer metabolism). A stable-isotope tracing capillary electrophoresis–mass spectrometry (CE-MS) metabolomic approach was developed to cover both polar metabolites and isotopologues in a non-targeted way. An in-house developed software enables high throughput processing of complex multidimensional data. The practicability is demonstrated analyzing [U-13C]-glucose exposed prostate cancer and non-cancer cells. This CE-MS-driven analytical strategy complements polar metabolite profiles through isotopologue labeling patterns, thereby improving not only the metabolomic coverage, but also the understanding of metabolism.  相似文献   
45.
The low-cost, high specific surface area and porosity, controlled pore size, and chemical properties of metal–organic framework (MOF) materials have attracted much attention in the exploration of proton conduction. The method of chemically modifying MOF structures or introducing conductive medium into the holes can effectively improve the proton conductivities of the materials. Here, the structural tunability of ionic liquid (IL) and flexible MOF (fle-MOF) materials are matched to give full play to the conductivity of IL, the framework support, and the microporous effect of MOFs, which achieves the synergistic effect of performance and expands the temperature range of proton transfer. Three kinds of CS/IL@fle-MOF membranes were prepared by combining three fle-MOFs with 1-carboxymethyl-3-methylimidazole (CMMIM) in different proportions to obtain 15 pieces of membranes. The comparative analyses show that CS/IL@fle-MOF membranes have excellent proton conduction performance at a wider temperature range (263–353 K) and lower relative humidity (75% RH). Among them, the proton conductivities of CS/CMMIM@MIL-88A-25% and CS/CMMIM@MIL-88B-125% are up to 1.33 and 1.42 S cm−1 at 75% RH and 353 K, respectively; whereas those of CS/CMMIM@MIL-53(Fe)-75% and CS/CMMIM@MIL-88B-125% reach up to 2.1 × 10−3 and 1.28 × 10−3 S cm−1 at 75% RH and 263 K, respectively. The Ea of CS/CMMIM@fle-MOFs is in the range of 0.1–0.5 eV, suggesting that the proton transport follows predominantly the typical Grotthuss transfer mechanism. The results of this study indicate that the CS/CMMIM@fle-MOF membranes combinations offer great potential for the design of composite porous proton-conducting materials.  相似文献   
46.
Imprinting nanopatterns on flexible substrates has diverse applications in advanced fabrication. However, the traditional thermal nanoimprint lithography (T-NIL) often causes shrinkage upon cooling. Here, a simple yet versatile method is introduced to fabricate multiple nanopatterns on a flexible substrate coated with an azopolymer by combining athermal nanoimprint lithography (AT-NIL) and photolithography. The azopolymer has various mechanical properties upon photoirradiation: 1) phototunable glass-transition temperatures (Tg) and concomitantly photoinduced switch from glassy plastic to viscoplastic polymer; 2) prominent modulation of viscoplasticity under light illumination at different wavelengths. Regionally selective multiple nanopatterns are conveniently fabricated, presenting angle-dependent structural color images on poly(ethylene terephthalate) (PET) substrates. The flexible, athermal and multiple nanopatterning method has the potential for on-demand fabrication of complex nanopatterns.  相似文献   
47.
Zhong  Weizhou  Zhang  Zexiong  Chen  Xiaowei  Wei  Qiang  Chen  Gang  Huang  Xicheng 《Acta Mechanica Sinica》2021,37(7):1136-1151
Acta Mechanica Sinica - Multi-scale finite element method is adopted to simulate wood compression behavior under axial and transverse loading. Representative volume elements (RVE) of wood...  相似文献   
48.
Liu  Huan  Tao  Yubo  Huang  Wenda  Lin  Hai 《显形杂志》2021,24(3):565-581
Journal of Visualization -  A large software system contains millions of lines of source code, and the development often involves many developers over a long period. How to understand and...  相似文献   
49.
In this study, the synthesis of TaN nanosheets and their application in theranostic agents is reported. After coating polyethylene glycol (PEG) on the TaN nanosheets, the as-synthesized PEG-modified TaN nanosheets (TaN-PEG) show good stability and biocompatibility. Because of their high absorbance in the near-IR region, TaN-PEG can be utilized as photoacoustic imaging contrast agents for tumor imaging. Moreover, TaN-PEG has significant photothermal conversion performance, exhibiting effective laser-induced tumor ablation capability. The TaN-PEG possessing excellent photoacoustic contrast effect and photothermal properties thus have great promise in theranostic applications, especially imaging-guided cancer treatment.  相似文献   
50.
A metal-graphene hybrid metasurface polarization converter is designed in this Letter.The unit cell of the hybrid metasurface is composed of a butterfly-shaped structure whose branches are connected by multi-layer graphene sheets.The proposed device can be reconfigured from linear-to-circular polarization to cross-polarization by changing the Fermi energy of graphene.The simulation results show that for three-layer graphene,the device acts as a linear-to-circular polarization converter when EF=0 eV and switches to a cross-polarization converter when EF=0.5 eV.Compared with single-layer graphene,the device with three-layer graphene can maintain the cross-polarization conversion performance under low Fermi energy.Furthermore,two equivalent circuits in the x and y directions are developed to understand the working mechanism of the device.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号